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ABSTRACT 

An analysis of the effects of small impulses on Earth impacting asteroids is 

presented. The analysis is performed using a numerical routine for an exact, two-body, 

analytic solution. The solution is based on two-dimensional, two-body, Earth intersecting 

elliptical orbits. Given the asteroid eccentricity, time prior to impact and impulse 

magnitude and direction, an analysis of impulse-to-minimum-separation distance is 

generated. Impulse times prior to impact from zero to a few orbits are considered. The 

analysis is presented as three-dimensional plots of minimum separation distance as a 

function of impulse magnitude, direction, and time prior to impact. The general result is 

that for long lead times the optimal impulse occurs at the perihelia of the asteroid's orbit in 

the direction of the velocity vector, in the orbital plane. For short lead times the optimal 

impulse direction becomes more normal to the velocity vector, in the orbital plane, as the 

asteroid approaches the Earth. 
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I. INTRODUCTION 

The possibility that a large asteroid may impact the Earth delivering an energy in 

excess of 30 MT of TNT is a very real threat. One only has to look at the Moon in the 

night sky to gain an appreciation for the magnitude and probability of such an impact. 

How the human race deals with the threat of such an impact is of significant interest to the 

planet Earth as a whole. 

As discussed by Rather et. al. (1992), as early as 1705, when Edmund Halley 

wrote A Synopsis of the Astronomy of Comets, there has been speculation that an 

extraterrestrial object might impact the Earth, the possibility of such impacts was not 

perceived as a threat to life on Earth until the late 1940's when the Moon's craters were 

fully understood to be the result of impact events, not volcanism, and that the Earth is 

subject to the same impact hazard. Rather et. al (1992) also mention that the magnitude 

of the threat was not fully realized until the late 1970s to early 1980s.   The perceived 

threat began to stand upon a solid foundation with the publication by Alvarez et. al. 

(1980) of a theory on the extinction of the dinosaurs Hue to the impact of a large asteroid 

or comet 65 million years ago. The theory put forth by Alverez et. al. suggests that an 

impact by a 10 km diameter asteroid at the Chicxulub site off of the Yucatan peninsula 

indirectly caused the extinction of 60% of all life on the Earth, including the dinosaurs. 

Since the awareness of the possibility of an asteroid impacting the Earth began 

developing in the mid 20th century, there have been several "near misses" recorded. 

Perhaps the most spectacular near miss was a large fireball created by an object racing 

across the daytime sky in a northerly direction that entered the Earth's atmosphere above 

Utah in the United States and exited above Alberta, Canada on the 10th of August, 1972. 

The object observed was determined to be an asteroid upwards of 30 meters in diameter 

as reported in Sky and Telescope Magazine (1972). Had this asteroid's trajectory been 

ever so slightly different, mankind would have had its first opportunity to observe a large 

object impact the Earth. Such an impacting object would carve out a crater 200 to 500 

meters in diameter. Since then, several other asteroids and comets have been detected 

passing by the Earth at distances less than a few hundred thousand kilometers. Apollo 

Asteroid 1989FC, referenced by the AIAA Space Systems Technical Committee; Asteroid 



1991BA, reference by Scotti et. al. (1991); and Asteroid 1996JA1 referenced by Jaroff 

(1996) are three asteroids discovered recently passing very close to Earth.   On an 

astronomical scale, these close approaches are essentially impacts. 

In April of 1990 the American Institute of Aeronautics and Astronautics issued the 

position paper entitled Dealing with the Threat of an Asteroid Striking the Earth that 

briefly described the implications of an asteroid impact. The AIAA found that "Earth- 

orbit-crossing asteroids clearly present a danger to the Earth and its inhabitants." It was 

recommended that a "systematic and open program" for detection of Earth crossing 

asteroids be established as well as a study to "define systems which can deflect or destroy, 

or significantly alter the orbits of, asteroids predicted to impact the Earth." A few search 

programs existed prior to the position paper and a few others have begun subsequently. 

As a result of the awareness of the possibility of an asteroid or comet impacting 

the Earth, the National Aeronautics and Space Administration has sponsored two 

workshops to study the fundamentals of the impact and impact mitigation problem. The 

first workshop is summarized in the report entitled "The Spaceguard Survey: Report of 

the NASA-International Near-Earth-Object Detection Workshop." The second workshop 

is summarized in the report entitled "Near-Earth-Object Interception Workshop." The 

concentration of the workshops have been related to assessing the magnitude of the threat, 

impact effects and hazards to the Earth, as well as the political implications of developing 

an impact mitigation capability. Several books have been published on the matter, both 

technical and non-technical, and more than one Hollywood movie has been based on the 

subject. Two spacecraft exploration missions, Near Earth Asteroid Rendevouz (NEAR) 

and Clementine, have included intercepts of asteroids as a major part of their mission to 

study the nature of asteroids. However, little "astrodynamical analysis" has been 

performed on the feasibility of the impact mitigation problem 

The astrodynamical analysis of feasibility is where this thesis is intended to fit into 

the larger problem. Presented is an analysis of the impact and mitigation problem based 

on a two-dimensional and two-body analysis. It is intended to be a first order 

approximation for the solution of a larger problem. However, it is a more rigorous 

treatment of the astrodynamics of the hazard than previous published analyses, such as 



Ahrens and Harris (1994). Included in the following analysis is the periodic nature of the 

problem as well as the near term effects. The analysis is not concerned with object 

detection or orbit prediction, but instead centers on how impulses applied to an asteroid at 

various points on the asteroid's orbit affect the outcome when there is a presumption of 

collision otherwise. Mission design for mitigation is not a goal of the following analysis; 

however, the analysis tool presented may be utilized in deterrnining a first order estimate 

for optimizing the time and position of asteroid intercept for impact mitigation. 

Presented first is an astronomical development of the existence of an asteroid 

impact problem from the origins of the solar system to the record of past impacts on the 

Earth followed by a brief description of two-body orbits. The problem is then presented 

with governing assumptions and a method of solution. The solution method is then 

assessed and validated followed by an analysis of an asteroid impact scenario with a 

discussion of the results. The analysis method is then applied to the asteroid Toutatis 

which will make several close approaches to the Earth over the next decade. 





II.       SOLAR SYSTEM OBJECT ORIGINS 

A. SOLAR SYSTEM FORMATION 

Current theories of formation of the Solar System stem from the post initial 

expansion universe environment of gas, dust, radiation, and magnetic fields in a 

nonuniform distribution.   Bouyed by the interplay of gravitational, magnetic, and pressure 

forces local mass concentrations began to form. This interplay offerees on the non- 

uniform environment sets up initial angular momentum conditions for very large three- 

dimensional structures. These large rotating structures began to coalesce into accretion 

disks around central masses. These central masses eventually reached critical mass for 

fusion to occur and stars emerged. We call our local star the Sun. 

B. PLANETARY FORMATION 

In a similar fashion to the stellar formation, the accretion disk around the Sun 

provided the environment for smaller mass concentrations and accretion disks to form thus 

producing small scale structures called planetismals composed of the basic chemical 

elements in varying quantities. Gravitational attraction and relative motion of these 

planetismals caused them to collide with one another and cohesive forces enabled some to 

remain attached forming larger structures. After enough of these interactions occurred, 

the planets began to form Unlike for the stellar conditions, the planets do not possess the 

critical mass to initiate and sustain a fusion reaction. This allows for large scale assembly 

of solid, aqueous and gaseous structures to take place in quantities and composition 

proportional the relative percentages of chemical elements present in the planetismals. 

These structures are more familiar on the Earth as the crust, the oceans and the 

atmosphere. Analysis of the elements present from the impact delivery mechanism and 

current known compositions of asteroids and comets suggests that this was the mechanism 

of organic and non-organic material delivery that formed the Earth as proposed by Chyba 

et. al. (1994). 

C. ASTEROID AND COMET FORMATION 

However, not all of the accretion disk surrounding the Sun coalesced into either 

the Sun, the Planets or their satellites. The remainder of the planetismals continue to be 

dispersed throughout the Solar System in the form of asteroids and comets. The asteroids 



being located primarily within the inner Solar System, and the comets existing in the outer 

Solar System and beyond. 

The asteroids are mainly concentrated in the asteroid belt located between the 

orbits of Mars and Jupiter. The remainder of the asteroids are dispersed throughout the 

solar system in elliptical orbits lying mainly inside the orbit of Jupiter. There are several 

theories of how the asteroid belt came to exist. These ideas include the destruction of a 

planet, or the inability of a planet to form, due to the tidal forces of Jupiter. There are 

several theories accounting for the formation of the asteroids not located in the asteroid 

belt. These ideas range from planetismals that have never collided and attached 

themselves to another planetary body, to cast off remnants of massive collisions of 

planetary bodies with very large planetismals, to objects from the asteroid belt that may 

have been perturbed by a passing object into a smaller orbit. All of the ideas have some 

amount of merit that give them validity. 

Comets are believed to originate from the Oort Cloud of cometary material 

orbiting the Sun at a distance of some 50,000AU. From this cloud, comets are believed to 

be injected into the solar system by orbital perturbations due to the gravitational field of 

passing stars. Once injected into the solar system, gravitational encounters with the Sun 

and Jupiter may further perturb the comets' orbit and either "capture" the comet, so it 

remains within the solar system, or "assist" the comet on its way to interstellar space. 

Additionally, there is believed to exist a band of icy objects that extends from the orbit of 

Neptune at 30 AU out to as much as 100 AU. These objects are said to be located in the 

Kuiper Belt, so named after Gerard Kuiper, who first proposed their existence in 1951. 

The objects that form the Kuiper belt range in size and orbital characteristics to the extent 

that it is believed that Pluto may actually be a member of this group as discussed by Jewitt 

and Luu (1995). 

D.       ASTEROIDS 

1. Location 

The asteroids are of particular interest as potential impact hazards in that they have 

a greater mass density than comets and are more likely to reach the surface of the Earth in 

a given impact scenario. The majority of the asteroids are located in the asteroid belt 



between the orbits of Mars and Jupiter. Very few asteroids have been detected beyond the 

orbit of Jupiter. This lack of detection may only be an effect of the limited capability of 

current detection sensors. However, a significant number of asteroids in orbits smaller 

than that of the typical asteroid belt object have been identified. These are the objects of 

primary concern for the problem of mitigation. 

2. Quantities 

Literally thousands of asteroids have been observed and identified orbiting the Sun. 

Of those, more than 300 are considered near Earth asteroids (NEA's) and pose a threat as 

a potential impacting object. Of greater concern are the subset of NEA's dubbed Earth 

crossing asteroids (ECA's) which are currently about 200 in number. The orbits of the 

ECA's are such that they allow for the possibility of impact with the Earth at some fixture 

date. These ECA's range in size from 10 km down to 0.1 km, which is currently the limit 

of detection of asteroids by Earth based sensors. Estimates for ECA's near and above 10 

km in diameter indicate that all of the asteroids have been identified and that for the ECA's 

of 1 km in diameter or less, the identified asteroids represent only about 10% of those that 

are believed to exist, as stated by Grieve and Shoemaker (1994). 

3. Classification 

Classification of the ECA's are determined with respect to the Earth's orbital 

extrema. The Earth's perihelion and aphelion distances are 0.9833 and 1.0167 AU 

respectively. The orbits of the ECA's all have perihelia less than the aphelion of the Earth 

orbit and aphelia greater than the perihelion of the Earth orbit. The ECA's have been 

subdivided into three classes, the Atens, Apollos and Amors, based on their orbital 

characteristics as discussed by Rabinowitz et. al. (1994). Table 1 summarizes the 

distinction between the three classes. Figures 1, 2 and 3 depict typical orbits of each of 

the three classes. 



Class Name Semi-Major Axis 

a(AU) 

Perihelion Distance 

q(AU) 

Aphelion Distance 

Q(AU) 

Aten <1 - > 0.9833 

Apollo >1 < 1.0167 - 

Amor - 1.0167 <q< 1.3 - 

Table 1. ECA Classes 

2062 Aten, Semi-major axis = 0.9666 AU, Eccentricity = 0.1826 

Figure 1. Typical Aten Orbit 



4179 Toutatis, Semi-major axis = 2.5154 AU, Eccentricity = 0.6361 

X(AU) 

Figure 2. Typical Apollo Orbit 

433 Eros, Semi-major axis = 1.4582 AU, Eccentricity = 0.2229 

-1.5 -1 -0.5 0 
X(AU) 

0.5 1 

Figure 3. Typical Amor Orbit 



4.        Physical Properties 

The physical properties of the asteroids are generally that of "rocky", irregularly 

shaped spinning objects. Estimates of asteroid densities range from a more cometary 

density of 2x103 kg m"3 to a dense asteroid of 5x103 kg m"3 with a mean density of about 

3x10 kgm. Asteroids have been observed that are composed of a single solid mass as 

well as multiple mass centers either physically connected or gravitationally bound at a 

contact surface. As stated by Winters (1996), some of the asteroids may actually be 

aggregates of numerous smaller bodies that are gravitationally bound together. This 

hypotheses is further supported by analysis of object spin motion. It appears the many 

asteroids spin at angular rates sufficiently slow as to permit gravitational binding. The 

case of the comet Shoemaker-Levy 9 supports these theories in that it was gravitationally 

separated by tidal forces from a previous passage of Jupiter prior to its 1994 impact. 

E.        COMETS 

1. Location 

Early in the 20th century, Jan Oort hypothesized that virtually all of the comets 

originate in a cloud of cometary matter beginning some 50,000 AU from the Sun. The so 

called Oort cloud is assumed to be a uniformly distributed spherical shell that surrounds 

the solar system and extends to approximately half of the distance to the nearest star, 

Alpha Centauri. From this cloud, comets are injected into the solar system by orbital 

perturbations of passing stars. Once inside the solar system the comets may be further 

perturbed by the planets. The planetary perturbations may "capture" the comet in the 

interior of the solar system or it may assist the comet on its way ejecting it from the solar 

system for all time. 

2. Quantities 

The number of comets in the Oort cloud is believed to be diminishing, however the 

remaining number is believed to be on the order of 1012. The quantity of comets that exist 

within the solar system is far smaller, only 100 or fewer have been identified. 

3. Classification 

The "captured" comets are classified as periodic comets and are subdivided into 

two groups as summarized by Shoemaker et. al. (1994). Members of "Jupiter's Family" 

10 



have aphelia close to Jupiter's mean orbital distance from the Sun and have periods of less 

than 20 years. Members of the "Halley family" are the so called long period comets and 

have orbital periods greater than 20 years but less than 200 years. 

4.        Physical Properties 

Comets are primarily composed of "rock" and "ice." As such they have been 

sometimes called "dirty snowballs" or "icy dirtbaUs" depending on their relative 

composition. The icy material is believed to be composed of water, methane or ammonia. 

The rocky material is a variety of carbonaceous substances. Their mean density is less 

than that of the asteroids and is estimated to be about 1000 to 2000 kg m"3. As a comet 

"burns" off its icy material from repeated encounters with the Sun, the nucleus may in fact 

become an asteroid of a somewhat smaller dimension. 

11 
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III.      IMPACT RECORD 

Occasionally an asteroid or a comet's orbit is such that it actually hits another 

object within solar system such as the event, widely celebrated in the media, of comet 

Shoemaker-Levy 9 impacting the planet Jupiter on the 16th of July, 1994. The very same 

mechanism that caused the solar system, in particular the Earth, to form and sustain life 

now threatens the very same life. 

A. LUNAR IMPACT RECORD 

One theory of the origin of the Moon, as mentioned by Chapman and Morrison 

(1994) describes it forming as the result of a Mars size object impacting the Earth early in 

its existence . The ejecta from the event is believed to have behaved in such a fashion as 

to remain in orbit and coalesce into what is now the Moon. Further evidence of such 

impacts is the cratered face of the lunar surface. The Moon displays literally millions of 

impact sites. Since the Moon has no atmosphere or large scale geologic processes there is 

no erosion of the impact record, unless by subsequent impact the previous impact 

structure is destroyed. Thus, the Moon serves as a reminder for all time of the nature of 

the impact hazard. 

B. TERRESTRIAL IMPACT RECORD 

On our planet Earth, the atmosphere, oceans, volcanism and plate tectonics tend to 

erode past impact sites. As discussed by Grieve and Shoemaker (1994) there are currently 

about 140 known impact craters around the world. The locations of these sites are 

displayed in Figure 4. 

13 



Figure 4. Known Impact Site Locations from Grieve and Shoemaker (1994) 

These impact craters range in size from 1.5 km in up to 200 km in diameter. 

Perhaps the best example of a classic impact crater is the 1.5 km diameter Barringer Crater 

located in Arizona, see Figure 5. Barringer Crater is believed to be the most recent impact 

site on Earth having formed around 50,000 years ago. 

Figure 5. Barringer Crater from Grieve and Shoemaker (1994) 

However, the most recent impact event to have resulted in surface damage is 

believed to be the Tunguska event which took place over northern Siberia in 1908. The 

14 



Tunguska event is believed to be the result of a 60 m diameter comet or light asteroid that 

exploded 10 km up in the atmosphere releasing some 30 MT of energy leveling 2500 

square kilometers of forest. The Tunguska event is characteristic of a small scale impact 

occurrance. On the large scale end of the impact spectrum lies the K/T impact event so 

called by its occurrence in time at the boundary of the Cretaceous and Tertiary periods. It 

is believed that an enormous asteroid some 10 kilometers in diameter created the 200 km 

diameter Chicxulub impact site beneath the Gulf of Mexico off the coast of the Yucutan 

peninsula and is responsible for the extinction of 60% of the living species on Earth 65 

million years ago. 

There have been numerous recent close calls of asteroids impacting the Earth. 

Jaroff (1996) describes a near impact as recently as June of 1996 where an object roughly 

600m in diameter passed within 450,000 kilometers (about 70 Earth radii) of the Earth. 

C. OTHER PLANETARY IMPACTS 

Numerous impact sites have been observed by planetary exploration spacecraft that 

have been sent to Venus and Mars. As mentioned above, Comet Shoemaker-Levy 9 

impacted the planet Jupiter in July of 1994. 

D. IMPACT SCALE 

The energies released by the impact of asteroids on the Earth are quite large. It is 

conventional to express the impact energy in terms of megatons of TNT (MT), where 

1MT = 4.2x10I5J. With the assumption of a mean asteroid density of 3000 kg m3 a size 

versus impact velocity relation may be made for a given impact energy. Figure 6 displays 

an estimate of asteroid mass versus impact velocity for a range of impact energies from 

tens of megatons of TNT up to a petaton (1015) of TNT. The diameter estimate assumes 

an effective spherical radius corresponding to the mass for the same impact energy and 

velocity. 

15 



10 10' 10 
Impact Velocity (km/s) 

10" 10 10 
Impact Velocity (km/s) 

Figure 6. Impact Scale 

Estimates of impact energy and terrestrial devastation have lead to the 

classification of impacts as local, regional, and global events as described in Morrison et. 

al. (1994). The distinction between these is somewhat blurred, however it is proposed 

that local events correspond to impact energies in the vicinity of 30 MT or less which will 

affect approximately 0.001% of the Earth's surface area or about the size of a large 

metropolitan area. Regional impact events are those that release energy in the vicinity of 

300 MT to 3x104 MT and affect about 0.1% of the Earth's surface or about the size of a 

large state. Global events are considered to be impacts that release energies near and 

above 3xl05MT affecting approximately 10% of the Earth's surface area or about the size 

of a large country. These large events may cause such disruption of the ecological 

environment by particulate injection into the atmosphere that greater that 25% of the 

Earth's population may be eliminated. Figure 6 also shows several representative impact 

16 



scenarios for a typical impact velocity of 20 km s"1. The Tunguska event is depicted by the 

'*' symbol. Tunguska represents a nearly classical local impact event of an object some 60 

m in diameter. The recent May 1996 near miss is depicted by the'+' symbol and 

represents a regional event for an object some 600 m in diameter. A global impact is 

indicated by the 'o' symbol and corresponds to an asteroid some 1.5 km in diameter. The 

'©' symbol represents the K/T event that created the Chicxulub impact site and 

corresponds to a 10 km diameter object. It is noted that the K/T event is well above the 

threshold for global catastrophe. 

17 
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IV.      ORBITS 

A. CONIC SECTIONS 

In a simple inverse square gravitational field, orbits take the shape of conic 

sections. For an object that lacks sufficient energy to escape the gravitational attraction of 

the central body, the resultant orbit will take the shape of an ellipse. For an object with 

sufficient energy to escape the gravitational attraction of the central body, the resulting 

orbit will take the shape of an hyperbola. The transition from an elliptical to hyperbolic 

orbit occurs along an "escape" trajectory shaped as a parabola. Straight line orbits that 

lead to collision of the orbiting body with its mass center are special cases of elliptical, 

parabolic, and hyperbolic orbits. 

B. COORDINATE FRAMES 

1.        Three-dimensional 

To define the physical problem in time and space a reference frame needs to be 

established. For the general three-dimensional case a Cartesian Sun-centered inertial, or 

Heliocentric, coordinate frame is chosen. Figure 7 displays the orientation of the 

Heliocentric coordinate frame. 

first day 
of summer 

verna I  equinox 
direction 

first doy 
of winter 

(Seasons   are for Northern Hemisphere ) 

Figure 7. Heliocentric Coordinate System from Bate et. al. (1971) 
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The direction in the ecliptic plane from the Sun to the First point of Aries serves as 

the primary coordinate direction in the Heliocentric frame. The ecliptic normal serves as 

the "vertical" coordinate and is defined as positive in the northern half of the celestial 

sphere. The last coordinate direction is defined by taking the cross product of the 

previous two coordinate directions. 

2.        Two-dimensional 

To simplify matters for the present analysis, a two-dimensional planar perifocal 

coordinate frame is chosen. The principal axis defining a two-dimensional elliptical orbit is 

the direction toward periapsis from the primary focus. It is from this primary axis that the 

true anomaly is measured in a counterclockwise sense. The secondary axis is normal to 

the primary axis in a right handed sense. The resultant coordinate system is shown in 

Figure 8. 

*" P, Perihelion 

Figure 8. Perifocal Coordinate System 

C.        ORBITAL ELEMENTS 

1. Three-dimensional 

In the general three-dimensional case six orbital elements are required to define a 

particular location in space of an object in orbit. Those orbital elements are the semi- 

major axis (a), eccentricity (e), inclination to the ecliptic (i), longitude of ascending node 

(Q), argument of periapsis (©) and the time of periapsis passage (T). See Figure 9. 

20 



Figure 9. Three-dimensional Coordinates from Bate et. al. (1971) 

2.        Two-dimensional 

In the perifocal coordinate system, only the semimajor axis (a), eccentricity (e), 

and true anomaly (v) are required to fix a position on an orbit. (Note the argument of 

periapsis is defined to be zero in this coordinate frame.). Other parameters of concern are 

the perihelion distance (q) and the aphelion distance (Q). Figure 10 displays the two- 

dimensional perifocal coordinate system. 

Q,y 
i < 

r\ 
/ e = c/a c \^ 

i Focus 

,\ 
a c ' V 
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>P,5c 

Figure 10. Perifocal Coordinates 

D.        KEPLER'S SECOND LAW 

Motion of an object about the primary focus in an elliptical orbit is governed by 

Kepler's Second Law: the line joining the planet to the Sun sweeps out equal areas in 

equal times. This relation increases the difficulty in the problem solution in that there 
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exists a trancendental relationship between time and position. This relationship is called 

Kepler's Equation and takes the form: 

E-esinE 
*=——. o) 

^     e + cos v 
where cos E = . (2) 

1 + ecosv 
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V.       PROBLEM FORMULATION AND SOLUTION 

A. STATEMENT 

Given an impending asteroid impact with the Earth, one would like to know if 

there is an optimum point on the asteroid's orbit where an impulse may be applied to yield 

the greatest achievable separation distance at the closest point of approach for a fixed 

impulse. Additionally, it is desirable to determine if is there an optimum direction 

associated with the applied impulse that further increases the separation distance. 

B. ASSUMPTIONS 

In order to proceed with an approximate solution method, simplifying assumptions 

were made. The first assumption was that of two-body motion. That is, the Sun is the 

mass center about which the asteroid and the Earth orbit. Furthermore, the asteroid and 

Earth do not gravitationally interact with each other. It was also assumed that there were 

no external perturbing effects on the orbits due to non-gravitational forces other than the 

applied perturbing impulse. All orbits were assumed to be coplanar, which yields a two- 

dimensional problem. The perturbing impulse is assumed to occur instantaneously. The 

asteroid is assumed to be one of the near Earth objects and hence in an elliptical orbit 

around the Sun. Hyperbolic and parabolic orbits were not considered for this analysis. 

Finally, it was assumed that the Earth is in a perfectly circular orbit at 1AU. 

C. TEMPORAL CONSIDERATION 

In determining the separation of a NEO from the Earth, time becomes the 

dominant factor in solving the problem. The relative phase of each of the orbiting bodies 

determines whether the bodies will collide. Hence, the Earth-to-NEO separation distance 

is the quantity of concern. Changing the orbital elements becomes secondary to changing 

the asteroid's orbital phase with respect to the Earth. 

D. METHOD OF SOLUTION 

Solution to the above problem may be achieved by use of a numerical simulation 

scheme where the orbital equations of motion are integrated from some initial condition 

forward in time. However, such a simulation is time consuming (on the order of several 

minutes per impact scenario) and therefore limits the scope of any analysis. The 

assumptions stated above allow for use of analytic elliptical orbit equations. Building a 
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solution based on these analytic two-body equations offers a greatly reduced time for 

solution (on the order of a couple seconds per impact scenario) and therefore a greater 

scope of analysis may be performed. A Mathworks MATLAB model was constructed to 

numerically execute the following method. A numerical integration simulation was also 

developed in order to validate the analytic method. The solution description below is 

quite general. For a detailed solution description see Appendix A. The MATLAB script 

that corresponds to the solution method is displayed in Appendix B. 

1.        Geometry 

A general description of an elliptical orbit intersecting a circular orbit is used in the 

problem solution. This description suffices for all planar intercept scenarios. A rotation of 

the perifocal coordinates may be required to bring the model in alignment with the 

particular problem, but the relative geometry remains unchanged. Figure 11 demonstrates 

this equivalence. 

Figure 11. Equivalent Impact Scenarios 

To uniquely fix an intercept scenario with the above assumptions, only the impact 

true anomaly and orbital eccentricity need to be defined. In the case of planar orbits, the 

perihelion direction, as defined by original asteroid elliptical orbit, defines the principal axis 

from which the impact true anomaly is measured. Implicit in the above impact location 

description is the assumption of an Earth orbital radius of 1 AU. 
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2.        Solution Flowchart 

Figure 12 depicts the steps in the problem solution method. 

Specify: 
True Anomaly at Impact, 

Asteroid Eccentricity, 
Time from Impact of Impulse. 

I 
Determine: 

Unperturbed asteroid orbital elements. 

Determine: 
Impact time from perihelion with respect 

to unperturbed asteroid orbit 

Determine: 
Time from perihelion, true anomaly, ? and 
v for the point of impulse with respect to 
 the unperturbed orbit. 

I 
Apply impulsive perturbation Av 

Determine: 
Perturbed orbital elements from 

r and v + Av. 

4~* 

Determine 
Time from perihelion and true anomaly 

for the point of impulse with respect 
 to the perturbed orbit 

Create a mesh of orbital positions equally 
spaced in time about the impact point on 

the unperturbed orbit. 

Map the unperturbed mesh onto the 
perturbed orbit 

Map the unperturbed mesh onto the 
Earth's orbit. 

Determine: 
Earth to asteroid separation distance for 
the perturbed and unperturbed orbits. 

Evaluate the rninimum separation distance 
for the perturbed orbit. 

Figure 12. Solution Flowchart 
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3. Given Conditions 

For a given impact scenario, it is assumed the impact true anomaly, asteroid orbital 

eccentricity are known and the desired impulse time prior to impact is specified. It should 

be noted here that specifying impact true anomaly and orbital eccentricity fixes the semi- 

major axis and hence, the orbital period. If either parameter is changed, the semi-major 

axis changes. That is, as impact true anomaly increases from 0 to n the semi-major axis 

decreases, thus decreasing the orbital period. 

4. Unperturbed Orbital Elements 

From the given conditions and the known Earth orbit the perihelion distance, semi- 

major axis, and orbital period for the unperturbed orbit may be determined by: 

rJl + ecosvJ 
r  = —  p 1 + e 

r 
a=    p 

1-e' 

2n 
andP = 

n 

where n = . |— 

5. Impact Condition 

The time from perihelion of the impact with respect to the unperturbed orbit may 

be determined by Kepler's Equation as given in Equations (1) and (2). 

6. Initial Impulse Condition 

The time from perihelion of the impulse with respect to the unperturbed orbit may 

be determined by Figure 13 and the equation: 

(Impulse Time)penheii0n = (Impact Time)periheiion - (Impulse Time)impaci Time- 
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\Impulse TimeVribdion 

Figure 13. Impulse to Impact Time Relation 

The true anomaly at impulse may be determined by inverting Kepler's Equation 

such that true anomaly becomes a function of time. This approach requires an iteration on 

eccentric anomaly. 

The impulse position, f, and velocity, v, may now be found from: 

a(l-e2) 
(3) 

(4) 

1 + ecosv' 

f = (r cos v)x + (r sin v)y, 

and v = I—[(- sin v)x + (e + cos v)y], 

where p = all - e2 j. 

7. Perturbation 

An orbital perturbation, Av, is applied to the asteroid at the impulse position r. 

This yields a perturbed orbital velocity v + Av. 

8. Perturbed Orbital Elements 

From the impulse position r and perturbed velocity v + Av the perturbed orbital 

elements may be determined from: 

h = f x(v + Av), 

h2 

e = • 
P 

>*M      V  1 = |v + Av|2-— r-{r-(v + Av)}(v + Av) 

and Equation (4). 
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9. Perturbed Impulse Condition 

Substituting the perturbed orbital elements into Equation (3) enables the true 

anomaly at impulse to be determined with respect to the perturbed orbit. The time from 

perihelion of impulse with respect to the perturbed orbit may be found from Kepler's 

Equation. 

10. Orbital Positions at Impact Time 

To determine the separation distance of the perturbed asteroid from the Earth, the 

positions, and tunes, of the unperturbed asteroid orbit about the impact point must be 

mapped onto the corresponding positions and times of the perturbed asteroid orbit. That 

is, a one-for-one correlation between where the asteroid would have been if not for the 

perturbation and where the asteroid is due to the perturbation must be developed. This is 

the key step in determining the effect of the impulse perturbation. 

The true anomalies and time from perihelion of the perturbed and unperturbed 

orbits are related by Kepler's Equation and not a simple function. The approach used to 

achieve the required mapping is as follows: 

a) Unperturbed Orbital Positions 

Develop an evenly spaced window, or mesh, of time about the impact 

position wide enough to include the perturbed orbits' rninimum Earth separation. (A first 

estimate of the required width of this mesh is achieved by a numerical simulation. From 

the numerical simulation and model development an interval width of ± 1.5 x Av x 

Impulse TimeimpactTime was used to provide a sufficiently wide mesh to obtain a solution 

without excessive computation time.) By inverting Kepler's Equation, the true anomalies 

of the mesh points may be determined. From the true anomalies of the mesh points the 

orbital positions may be found from Equations (3) and (4). 

b) Perturbed Orbital Positions 

From the relationship of the time of impact (known) with the time of 

impulse (also known) the center of the mesh may be determined for the perturbed orbit. 

Again, the true anomalies of the mesh points and the orbital positions for the perturbed 

orbit may be determined by use of Kepler's Equation and Equations (3) and (4). This now 

yields the asteroid orbital positions due to the perturbation. 
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c)        Earth Orbital Positions 

In the same fashion, the Earth orbital positions corresponding to the mesh 

points may be determined. However, since a circular Earth orbit was chosen, it is easier to 

relate the mesh times to orbital positions by use of the Earth's orbital mean motion. 

11. Earth to Asteroid Separation Distance 

With the perturbed asteroid's orbital positions and the corresponding Earth orbital 

positions known, it is a simple matter to determine the Earth to asteroid separation 

distance at each of the mesh points from: 

Ri,sep =y(xi,p-xi/E)
2 + (yi/P-yi/E)

2. 

12. Minimum Separation 

From the above orbital separation distances, the minimum may be determined. It is 

useful to express this separation in terms of Earth radii. This enables a quick evaluation of 

whether a sufficient separation was achieved to cause a "miss". As with the analysis 

performed by Ahrens and Harris (1994) the resultant separation distances scale linearly 

with the applied impulse magnitude. 

13. Sample Model Output 

A sample of the MATLAB model output is shown in Figures 14 and 15. The 

impact scenario is for the case of an impact occurring at a true anomaly of 30°, an asteroid 

orbital eccentricity of lA, and a-perturbing impulse of 1 m s"1 in the direction of the velocity 

vector occurring 0.47 asteroid orbits prior to impact. Figure 14 displays the initial 

conditions of the scenario at the time of impulse. The impact position and the asteroid and 

Earth positions at the time of impulse are also displayed. Times prior to impact are 

displayed on the asteroid orbit in tenths of an orbital period. 
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Impact True Anomaly = 30 Orbital Eccentricity = 0.5 

1.5 

0.5 

S 
<     0 

-0.5 

-1.5- 
*-G±- 

Impact 

24 orbits; 

-3.5        -3        -2.5        -2 -1.5        -1 -0.5 
X(AU) 

Figure 14. Initial Conditions 

0.5 1 

Figure 15 shows the effect of the impulse on the asteroid near the impact point. 

The unperturbed asteroid position is shown achieving impact conditions at zero Earth 

radii. The perturbed asteroid trajectory is shown approaching an impact condition, but 

instead reaches a minimum separation (indicated by the 'x') and then increases in 

separation. 

Perturbed v. Unperturbed Asteroid to Earth Separation 

29.85 29.9 29.95 30 30.05 
True Anomaly (deg) 

30.1 30.15 

Figure 15. Perturbed Asteroid to Earth Separation 

30 



The minimum separation indicated in Figure 15 is the final output of the model. 

The figures were generated from the model working variables. This enables the model to 

be incorporated into a controlling routine allowing for repeated simulations that sweep 

over ranges of the input conditions. 
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VI.      PROGRAM VALIDATION 

Prior to making an analysis of various impact scenarios, the solution method and 

MATLAB model had to be validated. This validation was achieved by use of a simple 

numerical integration simulation and by comparison to approximate analytic solutions of 

nearly circular orbits. 

A.       NUMERICAL SIMULATION 

The numerical integration simulation was developed usingthe Mathworks 

MATLAB and SIMULINK numerical processors. The SIMULINK diagram and 

MATLAB script files that support the SIMULINK model are displayed in Appendix C. 

The two-body equation of motion integrated by the model is: 

_    -p_ r = — r. 
rJ 

Expressed as a two-dimensional system of linear differential equations in perifocal 

coordinate form: 

-p. x 
1*        f 

x = x, 

v   = =±1 
y      r2  r' 

y = y. 

Numerous orbital scenarios were run to ensure the numerical integration was 

performing correctly. A fourth order Runge-Kutta integration scheme was used for the 

simulation acting on a second order differential equation. This yields a solution that is 

analytically exact and accurate to the numerical precision of the computer microprocessor. 

For the present analysis, the computer microprocessor was a 100 MHz, 32 bit, Intel 

Pentium. For the cases chosen for orbital modeling verification, integrating around one 

orbit resulted in an ending position the same as the starting position with a relative error of 

2x10"16 (3x10"7 km error at 1.5xl08 km, 1 AU). 
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Once the numerical integration orbit models were validated, numerous perturbation 

simulations were made to provide a reference data base for the analytic method. It was 

found that the analytic method numerical model was in excellent agreement with the 

numerical simulations. Differences arose only from the difference in mesh size between 

the two solution methods, with the analytic solution having a finer mesh interval. 

B.       APPROXIMATE ANALYTIC SOLUTIONS 

For circular orbits, Ahrens and Harris (1994) performed an approximate analysis 

that yields expressions for maximum orbital separation due to impulses applied both 

normal to and parallel to the orbital velocity vector. For the case where the impulse is 

applied normal to velocity vector, the maximum separation is found half an orbital period 

later with a magnitude 5^ = 2AvP / %. This case is shown in Figure 16. 

-^8max«2AvP/7t 

Perturbed 
orbit   . 

AVP/TC 

Figure 16. Impulse Normal to Velocity Vector 

For the case where the impulse is applied parallel to velocity vector the separation 

a full orbital period later is found to be 8 = 3AvP per orbit. That is, for this case the 

separation increases by 5 for every orbit after the single impulse. This case is shown in 

Figure 17. 
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Perturbed 
orbit   . 

•' / Unperturbed 

Figure 17. Impulse Parallel to Velocity Vector 

Evaluation of these scenarios by numerical simulation verifies the above 

approximate solution. The separations between the perturbed and unperturbed orbits at 

the described locations does indeed agree very well with the approximate analytic solution. 

Further, evaluation of the above scenarios by the analytic method numerical model using 

an asteroid orbital eccentricity of 10"5 (nearly circular) and an impulse of 1 m s"1 yields 

virtually the same result as the approximate analytic solution. Table 2 summarizes the 

performance of the three solution methods for the circular orbit case. 

Impulse Direction 

Approximate 

Analytic Solution 

Analytic Numerical 

Method 

Numerical 

Simulation 

Normal to v 3AvP = 14.8 14.8 14.8 

Parallel to v 2AvP/7t=3.15 3.14 3.15 

(Separation in Earth Radii) 

Table 2. Validation of Solution Method 
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VII. ANALYSIS AND RESULTS 
A.   ANALYSIS 

The preceding analytic numerical method for solution of the Earth to asteroid 

separation problem was incorporated as a function into a routine that sweeps over impulse 

direction and time of impulse. In this manner hundreds of solutions may be generated in a 

few minutes. Appendix D contains numerous analyses for impact scenarios that may 

occur around the Earth's orbit. 

1.        Long Time Response Behavior 

For a perturbing impulse time well prior to impact the observed behavior resulting 

from the orbital dynamics is not linear. The Earth-to-asteroid separation achieved by an 

impulse is strongly dependent on the location of the impulse on the orbit as well as the 

direction of the impulse with respect to the orbital velocity. The typical behavior of an 

impulse is depicted in Figure 18. Each point on this plot represents the minimum 

separation point depicted on Figure 15. In Figure 18 the vertical axis represents the 

minimum Earth-to-asteroid separation (in Earth radii) that results from an impulse of 1 m 

s". The two horizontal axes represent the direction of the impulse and the time prior to 

impact of the impulse. The axis representing direction of impulse is measured from 0° to 

360° with respect to the forward direction of the velocity vector. The sense of the 

direction is that impulse directions between 0° and 180° point inward to the orbit and 

directions from 180° to 360° point outward from the orbit. The remaining axis represents 

impulse time prior to impact as a fraction of the asteroid's original orbital period (e.g., t/P 

= 0.5 corresponds to an impulse one half orbit prior to impact). 
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Impact True Anomaly = 30 

Orbtel Eccenfricily= 0.5 

dv=1 m/s 

360 

180 

Figure 18. Earth to Asteroid Separation 

2. Relative Maxima 

Impulse times ranging from 0 to VA asteroid orbits prior to impact yield two 

maxima points as shown in Figure 18. Inspection of these maxima points reveal that they 

occur at the time of perihelion passage for the asteroid approximately one orbit prior to 

impact for impulse directions parallel and anti-parallel to the orbital velocity vector. This 

relationship holds true for all cases considered. 

3. Non-perihelion Impulse Direction 

Closer inspection of Figure 18 reveals that for impulse times less than that 

corresponding to one orbit prior to impact, the maximum separation is achieved if the 

impulse direction is not aligned either parallel or anti-parallel to the velocity vector. This 

effect is better shown in Figure 19, which is a contour plot of Figure 18. 
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Impact True Anomaly = 30 deg, Orbital Eccentricity = 0.5, dv = 1 m/s 

90 180 270 
Direction of Impulse wrt V (deg) (ccw+) 

Figure 19. Contour Plot of Figure 18. 

360 

A distinct shift in the direction of impulse for maximum separation as the time of 

impulse becomes closer to impact can be seen. This shift in direction arises from the two 

ways in which to achieve the desired separation. If sufficient time prior time prior to 

impact exists, changing the speed of the asteroid on its orbit will shift the phase of the 

asteroid with respect to the Earth and avoid the impact. If the time prior to impact is 

short, changing the direction of the asteroid laterally with respect to its approach to the 

Earth is necessary to avoid the impact. For times prior to impact between these the 

former and the latter, a tradeoff between changing the orbital speed and displacing the 

asteroid laterally on its orbital path exists and is the cause of the shift in the optimal 

impulse direction. 

4.        Periodic Growth 

Thus far, only impulse times within approximately one asteroid orbital period of 

impact have been considered. Extending the analysis to beyond this time period 
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demonstrates the manner in which the separation grows as a function of impulse time. 

Figure 20 shows this behavior for the same impact scenario as discussed above. Of note is 

the periodic growth over time and the peak displacements occurring at each perihelion 

point. This particular figure represents a slice of Figure 18 along the 0° impulse direction 

extended from 0 to 10 orbits prior to impact. 

Impact True Anomaly = 30 deg, Orbital Eccentricity = 0.5, dv = 1 m/s 
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Figure 20. Periodic Growth of Separation Distance 

B.       RESULTS 

The collection of the numerous impact scenarios modeled by the above method 

may be found in Appendix D. A study of these numerous model results yield the following 

general conclusion. 

1.        Optimum Impulse Condition 

Assuming the optimum impulse condition is achievable in terms of a "real" mission 

sense (that is, the booster technology and energy delivery mechanism exist for asteroid 

mitigation), the optimum impulse point is located at the perihelion of the original asteroid 

orbit at least Vi orbit prior to impact. If time prior to impact permits, impulse at perihelia 
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multiple orbits prior have an even greater effect on separating the asteroid from the Earth 

at the given impact time. However, impact prediction becomes a problem in such cases as 

the validity of orbital prediction models in a general n-body problem comes into question. 

2. Optimum Impulse Direction 

If, due to the late time of detection, it is not possible to achieve even the first 

relative maximum for the optimum impulse condition, then there exists an optimum 

impulse direction at the time of impulse that maximizes the Earth to object separation. For 

fractions of an orbit from 0.2 < (t/P) < 0.9 there is a shift in the direction of impulse 

toward the orbital inward normal (for impulses that increase the orbital speed) and toward 

the orbital outward normal (for impulses that decrease the orbital speed) that yields a 

maximum in separation achievable. 

3. Time of Arrival Consideration 

Given the periodic nature of the impact problem, there exist conditions where it 

may be beneficial to delay a deflecting impulse until an optimal impulse condition occurs. 

For the scenario corresponding to Figure 20, if time permits delivery of an impulse two 

and one half asteroid orbits prior to impact, it would prove more advantageous to delay 

the impulse until only two orbits prior to impact in order to maximize the effect of the 

impulse. 

4. Detection Consideration 

The difficulty in realizing the use of an optimal impulse condition is that the 

detection of a colliding object may occur too late to achieve the most desirable condition. 

The earlier the detection the better the chance of deflection with a much smaller imparted 

energy. Unfortunately, the current search programs and record of detection have been 

yielding very short response times for NEO's having very close approaches. The current 

range of times for detection has been on the order of five days prior to closest approach to 

detection only after Earth passage. 
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VIII.   APPLICATION TO A REAL CASE 

A.       IMPULSE ACHIEVABLE 

The analysis of the energy coupling between an explosive yield and an asteroid 

performed by Ahrens and Harris (1994) shows that it may be feasible to deflect a NEO 

with an impulse magnitude from 1 cm s"1 to a few m s"1 for a globally threatening object of 

about 1 km in diameter. This impulse may be achieved using one of several methods. 

However, due to the relatively short warning times considered in this thesis, a nuclear blast 

appears to be the most efficient energy delivery mechanism. The blast may be a standoff 

detonation or surface detonation. 

For the standoff detonation, the required explosive yield, W, may be determined by 

the approximate expression: 

103AvD3 

W = 
nA     ' 

from Ahrens and Harris (1994), which has been modified to express yield in kT of 

equivalent TNT. The impulse, Av, is expressed in m s"1 and the asteroid diameter, D, is in 

km. The efficiency of neutron production, n, from the nuclear blast lies between 0.03 and 

0.3. The standoff blast efficiency factor, A, is taken for an optimum standoff distance of 

0.4 asteroid radii with an efficiency of approximately 0.3. An order of magnitude analysis 

of the above approximation is presented in Table 3. 

Impulse (m s"1) 0.1 km diameter 1 km diameter 10 km diameter 

0.01 0.1-1 kT 100-1000 kT 100-1000 MT 

0.1 1-10 kT 1-10 MT 1-10 GT 

1.0 10-100 kT 10-100 MT 10-100 GT 

10.0 100-1000 kT 100-1000 MT 100-1000 GT 

Table 3. Impulse and Diameter v. Standoff Explosive Yield 

For the surface detonation, the required explosive yield, W, may be determined 

from the approximate expression: 

W = 4xl0-9AvM, 'NEO' 
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also from Ahrens and Harris (1994) which again has been modified to express yield in kT 

of equivalent TNT. The impulse, Av, is expressed in m s"1 and the asteroid mass, MNEO, is 

in kg. An order of magnitude analysis of the above approximation is presented in Table 4. 

Impulse (m s"1) 0.1 km diameter 1 km diameter 10 km diameter 

0.01 60 T 60 kT 60 MT 

0.1 600 T 600 kT 600 MT 

1.0 6kT 6MT 6GT 

10.0 60 kT 60 MT 60 GT 

Table 4. Impulse and Diameter v. Surface Explosive Yield 

B.        TOUTATIS 

Asteroid 4179 Toutatis will have multiple close approaches with the Earth over the 

next 15 years. It is of interest to apply the above analysis and methodology to Toutatis as 

if it were going to impact the Earth. 

To perform this analysis it must be assumed that the orbit of Toutatis lies in the 

ecliptic plane. This is not far from the true geometry of Toutatis' orbit where the orbital 

inclination is 0.47° out of the ecliptic plane. From the catalog of NEA orbital elements 

listed compiled by Tholen (1995), the semi-major axis and eccentricity of Toutatis are 

currently listed as 2.5154 and 0.6361, respectively. Assuming that Toutatis and the Earth 

will collide and that the Earth is in a circular orbit at 1 AU yields an impact at ±38.53° 

with respect to the perihelion of Toutatis. This is determined by solving Equation (3) for 

true anomaly. Figure 21 depicts this relative orientation of Toutatis with respect to the 

Earth. For the following analysis, the +38.53° impact location is chosen for modeling 

purposes. 
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Impact True Anomaly = 38.53 deg, Orbital Eccentricity = 0.6361 
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Figure 21. Relative Orientation of Toutatis Impact 

Modeling the Toutatis collision in the manner described above yields the results 

displayed in Figure 22. From the JPL and NASA Photo Caption (1993) and Press Release 

(1996), the size of Toutatis is estimated to be approximately that of two attached spheres 

having diameters of about 4 km and 2.5 km. If both masses are combined, the effective 

spherical diameter is approximately 4.3 km. Using a mean asteroid density of 3000 kg m"3 

results in a mass for Toutatis near 1.25x1014 kg. From the previous impulse analysis, an 

explosive yield of about 5 MT is required in the case of a surface detonation and an 

explosive yield from 9 to 90 MT, depending on neutron production, is needed for a 

standoff detonation to achieve a 1 cm s"1 change in orbital speed. 

Using the 1 cm s" orbital speed change determined above, a maximum separation 

of 1.64 Earth radii is the result of an impulse delivered 1.02 orbits prior to impact 

(perihelion passage of the prior orbit). While the separation is sufficient to cause the 

Toutatis to miss the Earth in this scenario, a greater margin of safety would be desirable. 

A larger separation may be achieved by either delivering an impulse greater than 1 cm s*1 
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or delivering the impulse at an earlier perihelion passage. Recognizing the extremely large 

explosive yield requirements for increased impulse magnitudes, it would appear preferable 

to deliver the impulse at an earlier time. This type of analysis demonstrates the necessity 

for detection of threatening asteroids many orbits prior to impact. 

Impact True Anomaly = 38.53 

Orbital Eccentricity = 0.6361 

dv=0.01 m/s 

360 

Figure 22. Impulse Effects on Toutatis-Earth Impact 

46 



IX.      FURTHER CONSIDERATIONS 

The above analysis shows promise as a tool for rapidly evaluating numerous 

scenarios for deflecting an asteroid that is going to impact the Earth. The possibility for 

further investigation utilizing this method presents itself in analyzing longer response times 

prior to impact, generalizing the method to a three-dimensional method and eccentricities 

other than V2. Additionally, more work is needed in analysis of very short response time 

impulse effects. 

A. LONG RESPONSE TIME 

The analysis presented above and in Appendix D have been performed primarily 

for impulse times between 0 and IV2 orbits prior to impact. A few models were made for 

one impulse direction at times ranging from 0 to 10 orbits prior to impact. However, this 

investigation needs to be pursued further in search of general trends other than maximum 

separations occurring at perihelion points. 

B. THREE-DIMENSIONAL ANALYSIS 

The current model and method apply only to two-dimensional scenarios. It is of 

interest and merit to further generalize the analysis to the three-dimensional case. This will 

allow for orbital inclinations out of the ecliptic plane and better simulate a variety of real 

scenarios. 

C. ECCENTRICITY VARIATIONS 

In the above analysis, other than for Toutatis, the orbital eccentricities have been 

maintained at V2. An investigation into the effects of more circular orbits and highly 

eccentric orbits is in order. 

D. SHORT RESPONSE TIME 

The method presented is derived from a two-body representation of a more 

complicated physical system. This method is not valid for very short response times when 

the impacting object is within the Earth's sphere of influence. A further investigation is 

desirable to assess the effects of impulses in the three-body problem that arises when the 

object is detected close to the Earth. 
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APPENDIX A. DETAILED SOLUTION METHOD 

Given an Earth-asteroid collision with the following properties: 

A circular Earth orbit with semi-major axis (radius), aE = 1AU 

(orbital eccentricity, eE = 0 ); 

an asteroid orbit with orbital eccentricity ev ; 

the true anomaly at time of impact, v^^/XJ = v^^ E; 

and the time of the perturbing impulse, Av, prior to impact 
'O 
\rvJ Av 

Find the minimum separation of the asteroid from the Earth in the vicinity of the old impact point. 
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Nomenclature 

Variables: 

a semi-major axis 

E eccentric anomaly 

e orbital eccentricity 

h specific angular momentum 

F fraction 

N number 

n orbital mean motion 

P orbital period 

P orbital parameter 

R asteroid to Earth separation distance, km 

r orbit to Sun radial distance 

V velocity 

X x-position 

y y-position 

Av impulse quantity 

a angle w.r.t. x-coordinate axis 

V- gravitational mass parameter 

V true anomaly 

P asteroid to Earth separation distance, Earth radii 

Av shift in periapsis direction 

p I fraction of orbit from periapsis 
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Subscripts: 

days number of days 

E Earth 

i i* element 

inc increment 

impact impact position 

min minimum 

orbit orbit count 

P perturbed asteroid orbit 

P periapsis 

pos position 

Range set of all i's 

sep separation 

Sun Sun parameter 

U unperturbed asteroid orbit 

x x-component 

y y-component 

Av impulse 

II parallel component 

± normal component 

Symbols: 

A 

8 

incremental amount 

incremental amount 
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Elliptical Orbit Relations 

Mean motion: 

»-£ 
Period: 

n 

Radial distance to gravitational focus (general): 

a(l-e2) 
r = —  

1 + ecosv 

Periapsis radius 

r^l + ecosvj) 
fp 1 + e 

Semi-major axis: 

.-'- 
1-e 

Eccentric anomaly as a function of true anomaly: 

e + cos v 
cos E = 

1 + ecosv 

True anomaly as a function of eccentric anomaly: 

cos E - e 
cos v = — 

1-ecosE 

Time since periapsis: 

E-esinE 
t = 

True anomaly: 

n 
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cosv = 
,(w) 

re e 

Position at a point in perifocal coordinates: 

f = (rcos v)x + (rsin v)y 

Velocity at a point in perifocal coordinates: 

v =  I—|(- sin v)x + (e + cos v)y I 

Parameter of an orbit: 

= a(l-e2) = 
H 

Specific angular momentum: 

h = f x v 

Eccentricity vector in perifocal coordinates: 

1-12     ^ v  -• w r - (r • v)v 

Constants 

1AU = 1.4959787xl08 km, astronomical unit 

G = 6.67259x10 _2° km 3 kg _1 s ~2, gravitational constant 

Msun = l-9891xl030kg, mass of the Sun 

HSun =GMSmi =1.327124399355xl0nkm3s-2, Sun gravitational parameter 

RE =6.37814xl03km, Earth radius 
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Detailed Solution Method 

I. Determine unperturbed asteroid orbital elements, 

a. Perihelion radius: 

aE(l + eucosvimpactu) 
V= 17^ >km 

where r^^ v = aE 

b. Semi-major axis: 

,km du l-ev 

c. Mean mot 

nu 

ion: 

/Hsu* 

~Vau 
d. Period: 

Pu 
2TC 

nu 

, rad s' 

II. Determine the conditions at impact with respect to the unperturbed asteroid orbit, 

a. Eccentric anomaly at impact: 

E impact^ = COS"1 

r eu+cosvknpactv^ 

V1 + eUCOSVimpact,uy 

(cos1 principle values are 0 < 0 < 7t) 

b. Fraction of orbit since (or prior to) perihelion of impact: 

ft) 

impact,p 

■k impacts       eu Sm ^ impact,U 

2rc 

ifvjmpact/U<0,|^—J            <0 
^     impact,p 
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III. Determine the conditions at impulse with respect to the unperturbed orbit, 

a. Fraction of orbit prior to (or since) perihelion of impulse: 

/ 

V*V 

'O 't^ 

ViuA vPtIy Av,p "     u'   impact,p "     u'  Av,impact 

b. Eccentric anomaly at impulse (solve via Newton-Raphson iterative method): 

't^ 

vPuy Av,p 

EAv,U-euCOsEAv,U 

271 

c. True anomaly at impulse measured with respect to unperturbed perifocal coordinates: 

VAv,U = cos 

f  COSEAv,U-eU   ^ 

.1-eucosEA uy 

(cos"1 principle values are 0 < 0 < 71) 

'O 
vPny 

= N       +F 1N orbit T *■ orbit 

Av,p 

if -1 < Forbit < -7> , then vAv#u = 27t(Norbit -1) + vAV/U 

0,2jt 

if ~ 2 ~ Forbit < 0, then vAV/U = 2:iNorbit - vAV/U 

0,2JC 

if 0 ^ Forbit  < 2 ' then  VAv,U  = 2^Norbit + VAV/U 
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0,27t 

1 , s 
if 7 ^ Forbit < 1, then vAV/U = 27t(Norbjt +1) - vAv<u 

0,2n 

d. Distance to focus (Sun) from impulse location: 

au(l-eu) 
lAv,U , km 

(l + euCosvAvU) 

e. Velocity components at impulse with respect to unperturbed perifocal coordinates: 

V 
V- Sun 

x,Av,U 
^(l-e^) 

sinv4V/U,kms-] 

Vy'Av'u = Ja^l'-e?,)^ + COS Viv'u)' ^S"' 

f. Velocity direction with respect to unperturbed perifocal coordinates 

/ 
a = tan l 

v        "\ v y,Av,U 

VVx,Av,U/ 

(achieved utilizing "atan2(y,x)" numerical routine) 
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IV. Now perturb the asteroid with respect to velocity vector direction. 

a. Impulse velocity components with respect to unperturbed perifocal coordinates: 

Avx = Av(| cos a - Av± sin a , km s"1 

Avy = Avy sin a + Av± cos a, km s"1 

where, AVj is in the direction of the velocity vector 

and, Av± is normal to the velocity vector in a right hand sense 

b. Velocity components after perturbation with respect to unperturbed perifocal coordinates: 

v
x,Av/p=vx/Av/u+Avx,kms-1 

Vy,Av,P = Vy,Av,U + AVy , km S"1 
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V. Determine perturbed asteroid orbital elements from f and V . 

a. Position vector with respect to unperturbed perifocal coordinates: 

*Av,P = fAv,U = rx,Av,U* + ry/Av,uy + Oz , km 

Where=  r*,Av,U  =rAv,UCOSVAV/U 

«^ ry,Av,u = rAv,u sin vAV/U 

b. Velocity vector with respect to unperturbed perifocal coordinates: 

VAv,P = V
x,Av,P* + Vy,Av,Py + Oz , km Sl 

c. Specific angular momentum vector with respect to unperturbed perifocal      coordinates: 

hP =?4V/P
xVAv,p>kmV 

d. Perturbed orbit parameter: 

|Rp|2 h 2\ PP= = ap(l-ep),km 
M'Sun 

where |hp|2 = hp-hp 

e. Perturbed eccentricity vector with respect to unperturbed perifocal coordinates: 

"-Sun 

'( 
V 

V- 
\ 

Sun 
Av,Pl 

lrAv,ply 
rAv,P       \rAv,P " VAv,pjVAv,F 

where |v 

md|rAv,pl=rAv,u 

f. Perturbed orbital eccentricity: 

I     _ V .V 
Av,Pl Av,P     vAv,P' 

= Vep -ep 

g. Perturbed orbit semi-major axis: 

PP ap = 
l-e| 

, km 

h. Perturbed orbit mean motion: 
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nP =—r~ , rads1 

i. Perturbed orbital period: 

PP=—•» np 

VI. Determine the angle between the perturbed and unperturbed orbital eccentricity vectors. 

a. Unperturbed orbital eccentricity vector: 

ev =eux + 0y + 0z 

b. Rotation of eccentricity vector due to impulse: 

Av = cos l 
(■£   .g  > 

V epev ; 
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VII. Determine the impulse conditions with respect to the perturbed orbit, 

a. True anomaly at impulse with respect to the perturbed orbit: 

VAv,P = COS_1 

aP(l-ep)     1 
re p 

(cos'1 principle values are 0 < 6 < % ) 

if ~1 < Forbit < -~ >then vAv<p = 27t(Norbit -1) + v 

0,2JC 

1 

2 
if - ^ ^ Forbit < 0 > then vÄV/P = 27tNorbit - vAV/P 

0,2K 

if 0 ^ Forbit  < 2 ' theI1  VAv,P = 27tNorbit + VAv,P 

0, 2n 

if « ^ Forbit < 1, then vAV/P = 27t(Norbit +1) - vAV/P 

0,2JI 

67 



b. Eccentric anomaly at impulse with respect to perturbed orbit: 

EAv,P = cos" 

ep+cosvAvP 

l + epcosvAV/Py 

(cos'1 principle values are 0 < 9 < 7t) 

c. Fraction of orbit of prior to (or since) perihelion of impulse with respect to perturbed orbit: 

'O 
vPPy 

Av,p 

FAv,P ~ePSmEAv,P 

2jt 

if-1<Forbit<-7:Jthen 
1 

2 f)       =(N«*-l) + ff 
V1PyAv,p V1P' Av,p 

if-2-Forbit<0.then^— = N 'O 
orbit 

Av,p vPPy 
Av,p 

P    Av,p 

'O 
vPPy Av,p 

1 

2 
if^^ForKt <l,then 

'O 
vPPy Av,p 

= (Norbit+l)-(^ 
Av,p 
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VIII. Determine a range of times, and hence positions, of the unperturbed asteroid in the vicinity of the 

impact point on the unperturbed orbit for mapping to corresponding times, and positions, of the perturbed 

asteroid on the perturbed orbit. 

a. Set time period: 

Ndays =±2, days 

b. Set number of positions to map during time period: 

n no« =201 pos 

c. Establish limits of time interval: 

f   X. \ 

\rvj 

1N days 24hrs 
Iday 

f 3600s' 
V Ihr 

d. Number of increments in time period: 

n i„, = n „„„ — 1 mc pos 

e. Incremental time step: 

'O 
= A 

Pu^     vPuAn^; 

f. Now have npoa positions from -N^ to +Ndays in steps of 2N<%s/ninc parts of a day represented 

as fractions of a complete orbit. 

'O 
vPuV 

( i. A 

-A 
Range vP„y 

f i. ~\ 

vPuA. 
<+A 

'O 
vPtJy 

, in steps of 8 
'O 
\rvJ 

g. Center this range of positions on the fraction of orbit since (or prior to) perihelion of impact: 

69 



'O 
VI u7 

'O 
+ 

W vPuA ^    Range,impact ^    Range        "    u'   impact,p 

h. Eccentric anomaly at each time coordinate (solve via Newton-Raphson iterative method): 

't^ 

VI uV ^    i,Range,impact 

''-,i,U      ^U COS ±i j u 

2^ 

i. Determine the true anomalies at each time coordinate with respect to the unperturbed perifocal 

coordinates. 

v£,u = cos -l 
cosEi>u-eu ^ 

vl-eyCosE^y 

(cos"1 principle values are 0 < 0 < 71) 

if 
't^ 

vPuA Range,impact 

< --, then v^u = -2TI + v^ 

if 
\) 

<0,then vi#u =-vi/U 

i,Range, impact 

if M >-,then VJU =27T-viU 

L /Range ,impact 

j. Determine the radial distance to the focus (Sun) for these time coordinates: 

aufa-eu) 
i,u    1 + eyCOSViu 

, km 

k. Determine the distance components at each time coordinate with respect to the 

unperturbed perifocal coordinates: 

xi,u =riUcosviU,km 

yä,u = ri,u sin vi,u . km 
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IX. We now need to determine the true anomaly and fraction of orbit on the perturbed orbit that 

corresponds to the true anomaly and fraction of orbit at the impact position on the unperturbed orbit. 

Determine the positions and orbit fractions on the perturbed orbit that correspond to the n^ 

positions and orbit fractions of the unperturbed orbit. 

a. Fraction of orbit since (or prior to) perihelion of the "impact" position with respect to the 

perturbed orbit: 

\ 

■V 

f 

vPp. 
+ 

/ 

v^V Av vPp/ p,impact "    r'  Av,p 

b. Establish the n,^ orbital positions and fractions of orbit on the perturbed orbit that correspond 

exactly to the npos positions of the unperturbed orbit: 

A 

V 

't^ ^     ft> 

Range,impact VI uV Range v*w \rvJ. "    impact,p 

c. Eccentric anomaly at each time coordinate (solve via Newton-Raphson iterative method): 

r O Ei,p-epcosEi,p 

r     i/Range/impact 

d. Determine the true anomalies at each time coordinate with respect to the perturbed perifocal 

coordinates. 

( 
v; p = COS -l 

cosEiP-ep 

l-epcosEiPJ 

(cos-1 principle values are 0 < 0 < n) 

if 

if 

'O 
UPV "     i ,Range, impact 

< -—, then ViP = -2% + vi#p 

'O 
\rvj 

< 0, then Vj p = -Vj p 

i ,Range,impact 
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if 
'O 
W >- then viP =27l-viP 

i,Range,impact 

e. Shift true anomalies from perturbed coordinates to unperturbed coordinates: 

Vi,P,U = Vi,P + Av 

e. Determine the radial distance to the focus (Sun) for these time coordinates: 

,(l-eP) 

'      1 + ep cos v£ p 
,km 

f. Determine the distance components at each time coordinate with respect to the 

unperturbed perifocal coordinates: 

xi,p = ri,p cos vi,p,u, km 

yi/P=riPsinvi/P/U,km 

X. Now we need the positions of the Earth at the same n^ positions surrounding the impact position, 

a. True anomaly of the Earth at each of the n,^ positions: 

'O 
Range,E impact,E \rvj (PU^E) 

U     Range 

b. Determine the distance components of the Earth at each time coordinate with respect 

to the unperturbed perifocal coordinates: 

xi,E =aECOSVi/E,km 

yi/E = aEsinviE,km 
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XI. Now must handle the special case of 

For this case, set: 

Xi,P — Xi,U 

'O 
?J 

<A 
't^ 

Av UV 

y>,p = yt,u 

while 
'O 

<A 
'O 

Vi u7 Av VI u7 

XII. Define the separation distances of the perturbed and unperturbed asteroid orbital positions from the 

Earth orbital positions. 

a. Perturbed asteroid to Earth separation distance: 

RseP,P = y(xi,P -Xu;)2+(yi,p -yi/E)
2 ,km 

b. Unperturbed asteroid to Earth separation distance: 

RseP,u = y(xi,u -xi,E)
2 +(yi,u -yi,E)

2 .fan 

c. Scale the separation distances by the radius of the Earth: 

R sep,P 

^       Rt 

R„ 

, Earth radii 

Lsep,U 
Psep,U = ~^ > Earth radii 
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XIII. Finally, select the minimum value over the orbital position range as the minimum separation 

distance. 

a. Minimum perturbed asteroid to Earth separation: 

(Psep,?)^ = rc^Ps^p). Earth radii 

b.   Minimum unperturbed asteroid to Earth separation (By the definition of the problem this is 

zero, but this provides a good check of the method.): 

(psep,u) .   =min(PsepU),Earthradi 
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APPENDIX B. ANALYTIC SOLUTION METHOD, MATLAB MODEL 

%%%%%%%%%%%%%%%%%%%%%%Vo%Vo%%%%%%%Va%%Vo%%%%%%%%Vo%a/0%%0/0% 
% Arbitrary Elliptical Orbit Intersecting Circular Earth Orbit 
% 
% MATLAB Script File Name: nwarborb.m 
% 
% Author: LT Jeffrey T. Elder 
%        Naval Postgraduate School 
%        November 1996 
% 
%%%%%%%%%%%%%%%%Vü%%%%%%%%%%%%%%%%%%VO%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/o%%%%%%%%%%o/0o/0o/0o/oo/oo/o 

% Initialize computational workspace 
clear 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o^o/o%%o^%% 

% Define constants 
AU = 1.4959787e8; % astronomical unit 
musun = 1.327124399355el 1; % gravitational parameter for the Sun 
epsilon = 5e-6; % Newton-Raphson tolerance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0%o/o%%%%%o/0%%%%%y0o/0%o/0o/0 

% Gather input data from user 
nuimpactU = input('Enter True Anomaly for Impact (deg):'); 
eU = input('Enter Asteroid eccentricity:'); 
tPUdelv = input('Enter (t/P) of Impulse Prior to Impact:'); 
delV = input('Enter the Magnitude of the Impulse dV, (m/s):'); 
thet = input('Enter the Direction of the Impulse wrt V, ccw+ (deg):'); 
dwi = delV*cos(thet*pi/l 80); 
dvni = delV*sin(thet*pi/l 80); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Allow for model performance evaluation 
%flops(0) 
%tic 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/o%%%%%%o/o%%%o/o%%%%o/o%%%%o/o 
% Set Earth orbital elements 
aE = 1.0*AU; 
nE = sqrt(musun/aEA3); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%•^%%%%%%%%%%%%%%% 
% Convert impact true anomaly to radians 
nuimpactU = nuimpactU*pi/180; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/oO/0o/o%o/0o/o%%%%o/o%%o/o%%%%%%% 
% Determine unperturbed asteroid orbital elements 
rpU = aE*(l+eU*cos(nuimpactU))/(l+eU); % Perihelion radius 
aU = rpU/( 1 -eU); % Semi-major axis 
nU = sqrt(musun/aUA3); % Mean motion 
PU = 2*pi/nU; % Period 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine the conditions of impact wrt unperturbed orbit 
EimpactU =... % ... is line continuation 
acos((eU+cos(nuimpactU))... 
/(l+eU*cos(nuimpactU))); % Impact eccentric anomaly 

tPUpimpact =... 
(EimpactU-eU*sin(EimpactU))/(2*pi); % t/P of impact wrt perihelion 
if nuimpactU < 0 

tPUpimpact = -tPUpimpact; 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tPUpimpulse = tPUpimpact-tPUdelv; % t/P of impulse wrt perihelion 
Norbit = fix(tPUpimpulse); % Number of whole orbits 
Forbit = tPUpimpulse - Norbit; % Fraction of orbits 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Allow for numerical simulation validation 
tao = tPUpimpulse*PU; % Start time for simulation 
tend = (tPUpimpact+0.125)*PU; % End time for simulation 

if (-K Forbit) & (Forbit < -0.5) 
nuimpulseU =... 
2*pi*(Norbit-1 )+nuimpulseU; 

elseif (-0.5 <= Forbit) & (Forbit < 0) 
nuimpulseU = 2*pi*Norbit - nuimpulseU; 

elseif (0 <= Forbit) & (Forbit < 0.5) 
nuimpulseU = 2*pi*Norbit + nuimpulseU; 

elseif (0.5 <= Forbit) & (Forbit < 1) 
nuimpulseU = 2*pi*(Norbit+l) - nuimpulseU; 

end 

% Guess eccentric anomaly 

% allow for +/- tPUpimpulse 

% Newton-Raphson iteration 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine true anomaly of impulse 
EimpulseU = pi/4; 
tptemp = Forbit; 
if tPUpimpulse < 0 

tptemp = -Forbit; 
end 
true = 0; 
while true == 0 

fprime = 1 - eU*cos(EimpulseU); 
f= EimpulseU - eU*sin(EimpulseU) - 2*pi*tptemp; 
Elast = EimpulseU; 
EimpulseU = EimpulseU - f/fprime; 
if abs(EimpulseU-Elast) < epsilon, true=l;, end 

end 
if tPUpimpulse < 0, EimpulseU = -EimpulseU;, end 
nuimpulseU =... 
acos((cos(EimpulseU)-eU) ./... 
(1 -eU*cos(EimpulseU))); 

% End N-R iteration 

% True anomaly at impulse 
% If t/P of impulse exceeds 
% one orbit, determine true 
% anomaly for multiple orbits 
% Conditions to properly 
% locate true anomaly 
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%%%%%%%%%%%%%Vo%%%%%%%%%%%%%%%%%%%%%%%%%%%o/o%%%%'>/0o/0o/0o/0o/o 

% Determine orbital distances at time of impulse 
rimpulseU = aU*(l-eUA2)/(l+eU*cos(nuimpulseU)); 
ximpulseU = rimpulseU*cos(nuimpulseU); 
yimpulseU = rimpulseU*sin(nuimpulseU); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/o%%%%%%o/0o/o%%o/o%% 
% Perturb the asteroid 
pU = aU*(l-eU*eU); % Parameter of orbit 
vximpulseU =... 
-sqrt(musun/pU)*sin(nuimpulseU); % Unperturbed velocities 

vyimpulseU =... 
sqrt(musun/pU)*(eU+cos(nuimpulseU)); 

dw = dwi/1000.0; % Impulse parallel to V 
dvn = dvni/l 000.0; % Impulse normal to V 
alpha = atan2(vyimpulseU, vximpulseU); % Angle of V wrt x-axis 
vximpulseP =... 
vximpulseU+dw*cos(alpha)-dvn*sin(alpha); % Perturbed velocities 

vyimpulseP =... 
vyimpulseU + dw*sin(alpha) + dvn*cos(alpha); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<>/o%%%%%% 
% Determine perturbed asteroid orbit elements from R and V 
rimpulsePvec = [ximpulseU yimpulseU 0]; % Position vector 
vimpulsePvec = [vximpulseP vyimpulseP 0]; % Velocity vector 
hpvec = cross(rimpulsePvec, vimpulsePvec); % Angular momentum vec. 
pP = hpvec*hpvec'/musun; % Parameter of orbit 
ePvec = ( (vimpulsePvec* vimpulsePvec'-musun/rimpulseU)*rimpulsePvec... 
- (rimpulsePvec*vimpulsePvec')*vimpulsePvec )/musun; % Eccentricity vector 

eP2 = ePvec*ePvec'; 
eP = sqrt(eP2); % Eccentricity 
aP = pP/(l-eP2); % Semi-major axis 
nP = sqrt(musun/aPA3); % Mean motion 
PP = 2*pi/nP; % Period 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/o%%%%%%%%%% 
% Determine angle perturbed orbit perihelion makes wrt unperturbed orbit perihelion 
dnu = acos( (ePvec*[eU 0 0]')/(eP*eU) ); 
if ePvec(2) < 0, dnu = -dnu;, end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine impulse true anomaly wrt perturbed orbit 
cnuimpulseP = aP*(l-eP2)/(rimpulseU*eP) - 1/eP; 
nuimpulseP = acos(cnuimpulseP); % True anomaly at impulse 

% If t/P of impulse exceeds 
% one orbit, determine true 
% anomaly for multiple orbits 

if (-K Forbit) & (Forbit < -0.5) % Conditions to properly 
nuimpulseP =... 

2*pi*(Norbit-1 )+nuimpulseP; % locate true anomaly 
elseif (-0.5 <= Forbit) & (Forbit < 0) 

nuimpulseP = 2*pi*Norbit - nuimpulseP; 
elseif (0 <= Forbit) & (Forbit < 0.5) 
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nuimpulseP = 2*pi*Morbit + nuimpulseP; 
elseif (0.5 <= Forbit) & (Forbit < 1) 

nuimpulseP = 2*pi*(Norbit+l) - nuimpulseP; 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o0/o0/o%%%% 

% Determine impulse time wrt perturbed orbit 
EimpulseP = acos( (eP+cnuimpulseP)/(l+eP*cnuimpulseP)); 
tPPpimpulse =... 
(EimpulseP-eP*sin(EimpulseP))/2/pi; % t/P of impulse 

% If t/P of impulse exceeds 
% one orbit, determine t/P of 
% impulse for multiple orbits 

if (-1< Forbit) & (Forbit < -0.5) % Conditions to properly 
tPPpimpulse = (Norbit-l)+tPPpimpulse; % determine t/P of impulse 

elseif (-0.5 <= Forbit) & (Forbit < 0) 
tPPpimpulse = Norbit - tPPpimpulse; 

elseif (0 <= Forbit) & (Forbit < 0.5) 
tPPpimpulse = Norbit + tPPpimpulse; 

elseif (0.5 <= Forbit) & (Forbit < 1) 
tPPpimpulse = (Norbit+1) - tPPpimpulse; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%0/o0/o%%%%%0/o%0/o%%% 

ndaycoef = 1.5; 
Ndays = ndaycoef*tPUdelv*delV; % npos & Ndays define initial 

%  mesh size 
loop = 2; % Make two passes to ensure 
while(loop >= 1) % 'mesh' is properly sized 
npos = max([201 fix(100*Ndays+l)]); %  to give accurate minimum 

nuU=[]; % Initialize true anomaly 
nuP=[]; %  matrices 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%% 
% Create a mesh of orbit positions about the impact point on the 
%  unperturbed orbit 
deltPU = Ndays*24*3600/PU; % Unperturbed mesh half width 
tPURangeimpact =... % Unperturbed mesh properly 
linspace(-deltPU,deltPU,npos)+tPUpimpact;% located in t/P space 

for i = 1 :npos % Determine true anomaly of 
true = 0; % unperturbed mesh points 
EU = tPURangeimpact(i)*pi; 
tptemp = tPURangeimpact(i); 
if tPURangeimpact(i) < 0, tptemp = -tPURangeimpact(i);, end 
while true == 0 % Newton-Raphson iteration 

fprime = 1 - eU*cos(EU); 
f = EU - eU*sin(EU) - 2*pi*tptemp; 
Elast = EU; 
EU = EU - f/fprime; 
if abs(EU-Elast) < epsilon, true = 1;, end 

end % End N-R iteration 
if tPURangeimpact® < 0, EU = -EU;, end 
nuU(i) =... 
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acos((cos(EU)-eU)./( 1 -eU*cos(EU)));      % True anomalies of 
% unperturbed mesh points 

if tPURangeimpact(i) < -0.5 % Ensure true anomalies are 
nuU(i) = -2*pi + nuU(i); % properly located 

elseif tPURangeimpact(i) < 0 
nuU(i) = -nuU(i); 

elseif tPURangeimpact(i) > 0.5 
nuU(i) = 2*pi - nuU(i); 

end 
end 
rU = aU*(l-eUA2)./ (l+eU*cos(nuU)); % Positions of unperturbed 
xU = rU.*cos(nuTJ); % mesh points wrt unperturbed 
yU = rU.*sin(nuU); % coordinate frame 

%%%%%%%Vo%%%Vo%%%%%%%%%V0%%%%%%%%%%%%%%%%VoVo%%%%%%%%°/0%% 
% Map the mesh of orbit positions about the impact point onto the perturbed orbit 
tPPpimpact = tPPpimpulse + tPUdelv*PU/PP; % t/P of impact wrt perihelion 
deltPP = Ndays*24*3600/PP; % Perturbed mesh half width 
tPPRangeimpact =... % Perturbed mesh properly 
linspace(-deltPP,deltPP,npos)+tPPpimpact;% located in t/P space 

for i = 1 :npos % Determine true anomaly 
true = 0; % of perturbed mesh points 
EP = tPPRangeimpact(i)*pi; 
tptemp = tPPRangeimpact(i); 
if tPPRangeimpact(i) < 0, tptemp = -tPPRangeimpact(i);, end 
while true = 0 % Newton-Raphson iteration 

fprime = 1 - eP*cos(EP); 
f = EP - eP*sin(EP) - 2*pi*tptemp; 
Elast = EP; 
EP = EP - f/fprime; 
if abs(EP-Elast) < epsilon, true = 1;, end 

end % End N-R iteration 
if tPPRangeimpact(i) < 0, EP = -EP;, end 
nuP(i) 

acos((cos(EP)-eP)./( 1 -eP*cos(EP))); % True anomalies of perturbed 
' % mesh points 

if tPPRangeimpact® < -0.5 % Ensure true anomalies are 
nuP(i) = -2*pi + nuP(i); % properly located 

elseif tPPRangeimpact(i) < 0 
nuP(i) = -nuP(i); 

elseif tPPRangeimpact(i) > 0.5 
nuP(i) = 2*pi - nuP(i); 

end 
end 
nuPU = nuP + dnu; % Perturbed mesh true 

% anomalies wrt unperturbed 
% coordinate frame 

rP = aP*(l-eP2) ./ (l+eP*cos(nuP)); % Positions of perturbed mesh 
xP = rP.*cos(nuPU); % points wrt unperturbed 
yP = rP.*sin(nuPU); % coordinate frame 

%%%%%%%%%%%VO%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/0%%%%%%%%%% 

% Map the mesh of orbit positions about the impact point on the Earth's orbit 
delnuE = Ndays*24*3600*nE; 
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nuRangeE =... 
linspace(-detauE,delnuE,npos)+nuimpactU; % Earth mesh properly located 

%   in true anomaly space 
xE = AU*cos(nuRangeE); % Positions of Earth mesh 
yE = AU*sin(nuRangeE); % points wrt unperturbed 

% coordinate frame 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% handle special case of tPUdelv < deltPU 
if tPUdelv < deltPU 

[v,loc] = min(abs(tPPRangeimpact-tPUpimpact+tPUdelv)); 
xP(l:loc) = xU(l:loc); 
yP(l:loc) = yU(l:loc); 

end 

%%%Vo%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine the Earth to asteroid separation in Earth radii 
rhosepU =... 
sqrt((xU-xE).A2 + (yU-yE).A2)/6378.14; % Unperturbed orbit 

rhosepP =... 
sqrt((xP-xE).A2 + (yP-yE).A2)/6378.14; % Perturbed orbit 
[rhosepUmin,inu] = min(rhosepU); % Minimum unperturbed 

%   separation (must be zero) 
[rhosepPmin,inp] = min(rhosepP); % Minimum perturbed separation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if Ndays == ndaycoef*tPUdelv*delV % Refine mesh 

Ndays= 1.25*abs(tPURangeimpact(inp)*PU/3600/24 ... 
-tPURangeimpact(inu)*PU/3600/24); 

end 
loop = loop - 1; % Allow for loop exit 
end % End while(test) loop 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%0/o%% 
rhosepPmin % Display minimum separation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%% 
%toc % Display model performance 
%flops 

80 



APPENDIX C. NUMERICAL VALIDATION MODEL 

SIMULINK MODEL 

Clock 
—M 

Demux 

Demuxl 

—H 

—N 

—H 

vxl    1 

k... 

Vxl 

vy1   | 
—fc MATLAB Vy1 

Function 
Integrator 

Initiat Conditions 
Vx 

Y 

Unperturbed Orbit 

oib_eom1 XI      | 
X1 

yi   I 
Y1 

• 

Demux 

—y vx2    | 
Vx2 

—N vy2   | 
Vy2 _fc MATLAB Perturbed Orbit 

Function 
Integrator 

Initial Conditions 
Vx + dwx 
Vy + dvy 

Y 

orb_eom2 —>} X2    | 
X2 

—H y2   l 
Y2 

Demux2 

In order to run the SIMULINK numerical integration model, the analytic method 

model must first be run. The initial conditions for the integrators are specified by the 

working variables in the analytic model. 
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MATLAB SCRIPT SUPPORTING SIMULINK MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% 
% orbeom2d.m 
% 
% Equations of motion for 2d orbit 
% 
% Author: LT Jeffrey T. Elder 
% Naval Postgraduate School 
% November 1996 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o0/o%0/o0/o%%%%%%%%%%%%%0/o%% 

function xdot=orb_eom(x) 

mu=1.327124399355ell; 
AU=1.49597870e8; 
r2 = x(3)A2 + x(4)A2; 
mur2 = mu/r2; 
r =sqrt(r2); 

% Mass parameter for Sun 
% Astronomical unit 
% Radial distance squared 

% Radial distance 

xdot(l) = -mur2*x(3)/r; 
xdot(2) = -mur2*x(4)/r; 
xdot(3) = x(l); 
xdot(4) = x(2); 

% vx 1st ODE 
%vy 1st ODE 
%x 1st ODE 
%y 1st ODE 
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APPENDIX D. ANALYTIC METHOD SCENARIO MODELS 

The following collection of figures represents the analysis performed using the 

numerical routine developed to perform the analytic solution. The scenarios are evaluated 

for impact true anomalies from -180° to +180° referenced to the asteroid orbit perihelion. 

The "steps" between impact scenarios is generally in 30° increments, however, for clarity 

purposes, the step size is reduced to 10° or even 1° intervals at times. The primary 30° 

increment figures occur where a "surface plot" and impact scenario plot appear together. 

At other increment values, two surface plots appear together. 

For the surface plots at impact scenarios approaching ±180°, the surface appears 

rough due to the coarseness of the step size in impulse time and impulse direction. At 

smaller step sizes the behavior is smooth and well behaved. 
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